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Design of General Manifold Multiplexer

J. DAVID RHODES, MEMBER, IEEE, AND RALPH LEVY, FELLOW, IEEE

A fsstract—The direct analytical design process for arbkmry moltiplexers

given in a previoos paper is extended to the case of bandpms channel

filters connected to a uniform-impedance manifold (e.g., a length of

wavegnide or transmission line). The previoos approximations are greatly

improved by adding inrsrrittance compensation in a way which not only

preserves the canonic form of the network but also assists in the physieaf

construction by spacing the filters atong a manifold. The phase shifters

between channels are themselves sufficient to compensate the filter inter-

actions to such an extent that eontignoos channeling cases are designable.

Tfne rcsnlta are presented mainly in closed form reqnirbsg minimat com-

puter optimization.

Analysis of mrsttiplexers with frequency-dependent manifolds indicate

that there are restrictions on the total bandwidt~ but a ten-channel

multiplexer is probably feasible, suitable for inpnt and output rmsltiplexers

required in typical communications systems. Practical results on a simple

manifold triplexer are presented.

I. INTRODUCTION

I N THE previous paper [1] it was shown that there are

inh(:rent limitations to the canonic matching of a mul-

tiplexe- consisting of a number of filters connected di-

rectly in series or parallel. We may define canonic match-

ing as that requiring only changes to the parameters of the

filters and not adding extra immittance compensation

networks. In this paper immittance compensation is in-

troduced, but in a way which not only preserves the

canonic form of the network but also assists in the physi-

cal construction by spacing the filters along a manifold.
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The phase shifters between channels are sufficient to

compensate the multiplexer to such an extent that con-

tiguous channeling cases are designable by the theoqy.

It is interesting to consider various approaches tc) the

design of multiplexer, particularly on a manifold feed.

Due to requirements in communication satellites and

elsewhere, many attempts have been made to produce

such multiplexer. One important and difficult require-

ment is that of an output multiplexer on a wavegttide

manifold with bandpass channels separated to yield

gttardbands of only 10 percent. Most design techniques

have adopted an approach based upon singly terminated

bandpass channels resulting in 3-dB crossover points be-

tween channels, e.g., [2], [3]. Such designs exhibit good

return loss over the channel bandwidths and the guard-

bands. Also, dummy channels have to be included to

simulate channels at the edges of the total multiplexer

bandwidth, forming an additional annulling network.

Thus redundant elements are necessary, and the channel

interactions are compensated to produce a channel perfor-

mance comparable to the individual channels based upon

a singly terminated prototype.

The need for contiguous band multiplexelrs originally

arose in receiver design for countermeasures where the

incoming signal was unknown and complete band

coverage was necessary with good match at all frequen-

cies. Here all channels have to be designed on a singly

terminated basis and must provide a prescribed level of
attenuation over the major part of other bands.

However, the requirements for multiplexer in comm-
unication systems are different since they must provide
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good reflection and transmission only over each channel

bandwidth while maintaining high attenuation over all

other channels. For typically realizable passband return

loss specifications (e.g., 20–25 dB), the optimum solution

leads to attenuation in excess of 10 dB at the crossover

frequencies independent of the guardband bandwidth.

Thus contiguous band multiplexer are nonoptimum in this

situation and have probably been used because a design

procedure was known. They result in a higher degree filter

than necessary in each channel in addition to the annull-

ing network. Furthermore, if one attempts to use singly

terminated designs for crossover levels in excess of 3 dB,

the passband return loss rapidly deteriorates if further

annulling networks are not used.

The significant difference between the optimum design

approach and the contiguously designed solution to the

above type of problem may be illustrated by the simple

diplexer examples presented in [4, Figs. 4 and 5]. For the

case of two noncontiguous bandpass channels of band-

width 2 and guardband of 1, five-cavity Chebyshev filters

may produce a return loss >25 dB over each passband

while > 34-dB attenuation is achieved over the opposite

channel [4, Fig. 4], whereas the contiguous approach using

similar five-cavity filters gives an attenuation level over

the opposite channel of only 19 dB [4, Fig, 5]. Thus the

price paid for preserving the good 25-dB return loss at the

common port over the guardband region is a 15-dB reduc-

tion in the attenuation level in the stopband! Hence, for

most applications in communication systems, contiguous

band multiplexer result in designs far from the optimum

solution.

The alternative approach described here is an extension

of the companion paper [1] and similarly commences from

doubly terminated prototype filters. Modifications are

then made to all elements when the manifold is designed.

Criteria used in this approach are that multiplexer having

an arbitrary number of channels with different band-

widths and variable center frequency spacings should be

designable, and that the individual passband perfor-

mances should be maintained from the case of large

guardbands down to contiguous crossovers. In addition to

the 6-dB improvement in stopband attenuation levels over

frequency bands where a passband exists elsewhere in the

multiplexer (given by any type of design due to power

division between the in-band and out-of-band channels),

further improvement in attenuation due to compensation
of the interaction between channels should be expected.

II. MANIFOLD THEORY APPLIED TO

FREQUENCY-iNDEPENDENT MANIFOLDS

The theory for the manifold multiplexer is identical

with that of the directly coupled multiplexer up to (15)

and (17) of [1], which form the in-band and out-of-band

input admittances of the channel filters. It is necessary to

refer also to [1, Figs. 1–4] for definitions of the terminol-

ogy. However, rather than employing direct parallel con-

nection as in [1, Fig. 4], we form the manifold multiplexer

I

JII

I
~ ‘ ‘$m’

JIMI

----

C12 B12 %, %,

e

----
1

Fig. 1. Prototype mamfold multiplexer,

shown in Fig. 1. Y~(ti) is the imput admittance of the mth

channel as a function of frequency. The transfer matrix of

the mth, unity impedance phase shifter maybe written as

[

1 jB~a-’

& I

(1)
jB~a-’ 1

m

where

O~=tan-’ (Bma-]). (2)

Initially the manifold is assumed to be frequency indepen-

dent and of uniform inpedance. Modifications to the

design process will be made at a later stage to account for

the frequency dependence of the manifold. Note that as

a ~ cc (the case of decoupled channels), 61~e0 or an

integral multiple of T, i.e., the channels are effectively
connected in parallel as in [1]. a = 1 gives the actual
situation to be determined.

An additional n parameters B,, B2,. . . . B. appear to
have been obtained by connecting the filters on to a

manifold, but later it will be shown that one of these is

redundant.

If the rth channel is in band, then

Y,= Yr(!ilra + u,) (3)

as given by [1, eq. (15)] while the admittance of the rest of
the channels which are out of band are given by

Fm = Ym(flma +0,) (4)



RHODES AND LEVY: GENERAL MANIFOLD MULTIPLEXER 113

with rn==l, ”””, r-l, r+l, ”””, n and ~w isgivenby [l, eq.

(17)]. The transfer matrix of the network at the set of

frequencies (Qra + @ will now be derived. The transfer

matrix for the mth channel admittance followed by the

,m-~-~

mth phase shifter is

‘Zn]=-i=k=

I
1 jBma-’

– 2B – 3B

jB.a–l+~n +
ala ~

Cm:Q/r –mom) – cm,(~r – am)’
1

(5)

Fig. 2. Approximate equivalent circuit of manifold at frequencies in

the rth-channel passband.

r—l

r—1
~ B,

d,= ~ ‘=m – s (%” “s B*)
~=1 Cml(%-%) .1=2 i=l )

r—1

~=1 ~ B,

d2= ~ ‘=rn “
rn=l Cm, (Q, —QW)’

(8)

and the matrix possesses an error of order a”. We may proceed with a similar analysis for the network

For the first ; – 1 channels we have a transfer matrix

l~B

-[ 1

r—1

FCD
=~~,[T~] (6)

where by analysis, for errors up to a – 4, we have a Iossless

transfer matrix of the form

F=l+ ; ‘~’ B;a”2
m—1

A=l+a, a-2–a2qa-3

r—1

B=j ~ B~a-’+jb, a-3
~=1

r—1 r—1

C=j ~ Bma-l+ ~ ~m–jcla-3
~=1 ?? 1=1

D=l+d, a-2–qd2a-3 (7)

where

m—1

m—l

2 “ -i’ (%’%: B)
1=1

a,= ~
m=2 Cml(%w) r71=2

m—1

r—1
~“Bl

E
,=1

a2= ~=1 Cml(Llr-Qm)’
J–l

r—l

i

~ Bl m—l j–1

b,= ~ B~. ~
1=1

2(X)] B, B,
m=2 j=2 C,l(Q, –Q,) – 1=2 ,=1

[L 1

-.
after the rth channel. However, we require only the input

admittance which is given by

YL=$ (9)

with

A’=l+a{a-2–a@, a-3

where

m—1

~ B,

‘ i ‘=’al= ~=r+l c’m, (Qr-L?m)2

and Y~ is a reactance function Up to the order ~”.

We now have the network shown in Fig. 2, and at the

set of frequencies o = Q,a + u, we require the common

port reflection coefficient and the rth channel port reflec-

tion coefficient to be zero. Since up to the order of
approximation the networks given by (6) and (9) are

lossless, we need only apply the condition of a conjugate

match at any plane in the network. Applying this ccmdi-

tion at the junction with the rth port we have

A–C C’ ,.,..
yr=— ——

D–B–A’”
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Expanding the right-hand side of the equation as a

power series in s-’ and comparing with the expansion of

Y, in [1, (15)] yields

1) a -‘ term:

2) a -20, term:

3) a-2 term:

(14)

r—1 r—1 1
y,ll–y~l–c?l~~l=al–d[– ~ Bm” ~

~=1 ??2=1 Cml(fh–%)

4) a -30,2 term:

.5) a - 3W, term:

r—1 r—1

=d2–a2+ ~ B~. ~
1

~=1 wz=l cml(Qr– Qm)2

6) a -3 term:

cr2 &23
C’rl 813- — + Zcrl /3rll Yr12 – Yr02crl ~rl 1–c:/3; l

J;

J~l
+

Glcm2@r – %)2 )]

(15)

(16)

(17)

(18)

Applying the above set of equations for r = 1~n leads

to 6n equations with up to 6n unknowns. Since these are

linear simultaneous equations we may attempt to obtain

direct expressions for the unknown quantities.

Substituting for a2 and d2 from (8) into (17) gives

r—l

– c,, cr2 /3,23 r—1
~ B,

+ c,? Prll Yr12 = 2

~=~

J; rn=l cm, (Qr–flm)2 “

Defining a new function P, as

and substituting for ~,23 and y,12 from (16) and

respectively, into (19) results in the set of equations

P,– ~ B~” ~
1

m=r rn= l+r cm, (Q, –Qm)2

If

H,= ~ B.
~=~

then (21) may be rearranged as

r—1

P,– ~ ‘“

H,=
ln=l cml(!ilr-Qm)2

il
tn=r+l cml(Q, –Qm)2

and hence H, may be obtained for r = 1+n – 1. H.

(19)

(20)

(14),

(21)

(22)

(23)

is. in

general, indeterminate since the set of equations (21)’ on

close inspection represent n equations with n – 1 un-

knowns. From a network viewpoint this may readily be

appreciated by considering the network shown in Fig. 1.

The last phase shifter (1. represents a frequency invariant

reactance in parallel with the nth channel admittance

Y~(u). Since this may be readily absorbed into the modifi-

cation to the first admittance inverter and resonant

frequency of the first cavity, this element is redundant and

may be made zero, i.e.,

B.= O. (24)

In the very special case of the diplexer

p = (C,, -C,2) C,2
P2=TP, (25)

‘ C1, C:2(Q, –Q2)2 11

and, consequently,

P= –
H,

=0
c,,(f12-fl,)2

(26)

enabling both equations given in (21) to be satisfied. For
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the triplcxer and above in the rzth channel at the end of

the manifold only five of the six conditions may be

satisfied.

Combining (22) and (24) we have the final design for

the man) fold

B,= H,– H,hl (27)

with r=l,2,. . . ,rz-1 and H.=0.

Having solved for B,, we may then substitute into (13)

to obtain &l, as

[
fl’”=+ &-m,(&i?m)–~ ‘“

1
(28)

m=r

and from (14) and (16)

and

Additionally, the substitution of (8) into (15) gives

r—1

r—1
~ B,

“Y,02 = Y,]2 –c:/3:, +2 ~ “m
~1=, Cm,(fl–flm) “

(31)

In principle, the set of equations (18) may be used to

obtain &13, but these contain very tedious algebra. Since

these equations result from the a -3 term, they represent a

fine adjustment to the matching of each channel around

midband, and, in general, this is more readily done by

direct computer optimization of the circuit around the

midband frequencies of each channel, as described later.

Furthermore, since the a – 3tii could not be satisfied for the

nth channel, such optimization leads to a slightly im-

proved performance,

A further fine improvement in the design formulas may

be obtained by closer inspection of the expansions for Y,

and Y~ as given in [1, eqs. (15) and (17)]. If we assume

that the resonant frequencies of all the resonators should

be changed, then noting the format of [ 1, (1 l)], the follow-

ing generalization is applied:

where l=2k–1, k=2,3,. . . , N,. Similarly, if we assume

that the admittance inverters should also change, then a

generalization of [1, (9)] leads to

( ‘)Jr; +Jr; 1 – yr~l (33)

where l=2k, k=l,2,. .- , N, – 1. Now by expanding [1,

(15) and (17)] to a 5 it becomes obvious that the extra

correction terms above are associated only with the terms

of highest degree in O, for each coefficient of a ‘. Thus in

addition to [1, (19), (20), and (22)] which give

1) a -10,0 term:

2) a – 2U, term.

3) a - 3ti,2 term:

we have also

4) a -40,3 term:

J;
Y,’24 = — i—l

C,; C,2 m= l#r C~l(Qr – flW,)4

115

( 34.)

(35)

(36)

(3-1)

and

5) a - 5U,4term:

The general expression for the higher order telrms is now

obvious. Actually, these are associated with the effect of

the first resonators only of each out-of-band channel,

since such resonators are responsible for the terms of

highest degree in u,.

At this point it is useful to summarize the design pro-

cess step-by-step.

1) Compute the values of P, given by (20).

2) Compute the values of H, given by (23) for r==

1,2,. . . ,n—1 and Hm=O.

3) Then the B, are given by (27).

4) The coefficients &l 1, Y,lZ, &23, and yro2 alre given by
(28)-(31).

5) The higher ordered correction terms y,kl with 1❑ =2k

and /3,~1with l= 2k – 1 which are defined in (32) and (33)

are given by formulas such as (37) and (38), which are

easily generalized to give

where 1= 2k and

8k[ = &

where l=2k–1.

As stated earlier, in addition to the above design pro-

cess, a further refinement may be made to ensure that the

best possible performance is obtained about the band

center frequencies. For out-of-band channels, one may

truncate the filters after two or three cavities to produce a
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-4s -40 -32 -24 -16 -8 0 8 16 24 32 40 4s

FREQUENCY

Fig. 3. Computer response for common port return loss of the four-channel manifold

multiplexer.

7

, L

F
I

f

.%6 -48 -40 -32 -24 -16 -8 8 16 24 32 40 c 4E
FREQtiENCY

Fig. 4. Insertion loss response for each channel of the four-channel manifold multi-

plexer.

purely reactive loading on the manifold. Define Q,A as the

resonant frequency of the kth resonator of channel r.
Then in the odd-degree case J@ and Q,l may be slightly

modified to produce a conjugate match at the junction

with the manifold at midband. For the even-degree case,

Jr, and Q,z in addition may be modified to produce a

conjugate match at the two frequencies closest to mid-

band. This updating process may be performed channel

by channel and, if necessary, may be repeated.

A computer program has been developed to evaluate all

of the design formulas with the additional updating pro-

cess described above. As an example, we may consider a

four-channel prototype multiplexer with all channels be-

ing of the conventional Chebyshev type. The first channel

to be dropped along the manifold from the common port

is of fifth degree, 1 passband return loss of 22 dB, band-

width 17, and center frequency – 34.5. The three remain-
ing channels in order are of degree 3, 6, and 4, band-

widths 17, 27, and 7, and center frequencies – 11.5, 16.5,

and 39.5, all designed with a passband return loss of 22

dB. The guardband between all channels is 6. This multi-

plexer has much closer relative channel spacings than any

of the designs illustrated in [1]. The element values are

given in Table I, and the computed response for the

common port return loss is shown in Fig. 3 with the return

loss at the appropriate channel port being comparable

over the corresponding passband. The performance is

1Here “degree” corresponds to the number of cavities or resonant
elements of the filter.
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TABLE I
TARLE OF ELENDWT VALUES OF FOUR-CHANNEL PROTOTYPE

MLILTIPLEXERS “COUPLING” Is J,k, “ADM’ IS C,k, AND “REs.

FIZEQ.” Is ~rk; ELEMENTS ADJACENT TO THE MANIFOLD ARE

TABULATED FIRST

I pMMl_

I LQLEmLL

yGe& E3.LnsL
22 dB

ALM—— RES FREO,

+-– -----— ---–—-–- ---—---- ‘==q8#DMIRT.k
-34,5

I 0 9665
1 18:5

I

1.68J9
1.7011
1.31:2~ ——–- –-—— –—

LH@fiML

2

CQ!4uw

1.01’9
1.1216
1 67!,7
1 7007

_JJ_i2

I 1.61!,9

I
1,2D,1
1 77t, o
2.02(14
I 83?6

__l.33(, 7

CMAME1.

4

0.1053 -37,9807
0.2757 -35.0087
0,3408 -34 5264

0.2757 -34,5015
o.~3__ -34 5002

‘LLG8EL 8mL!m__

5 22 dB

ARM—- 8uJREQ_

WRh!LL1.. cENTRE FRE6.]

17 -11 5

6 22 dB

8D~ Es .jEKL_

0.0680 4.1212
0 1859 16 9914
0.2539 16 4915
0.2539 16,4953
0.1859 16,4991

.YO.8Q.. ---—! E4997

Sm8L RLLOSS.

4 ?2 dB

Lwl.m ,QM RES FREQi

0.76,18 0.2440 42,5572

1 ,22)8 0,5890 39 .5U79

1 ,49(>4 o 5890 39 5007

1,2717 0.2440 39 5

0MU41DTH. CEIWRLIRfQ, ]

2? 16 5

Wok 10IL CENIPE FRUL

7 3CJ,5

verv close to the 22-dB return loss level, and the band-.
widths and center frequencies are equal to the original

channel requirements. The significant improvement in

channel performance using this multiplexer design may be

observed in Fig. 4 where the insertion loss of each

channel is plotted. The 28-dB minimum level of attenua-
tion of the first three channels and 38 dB for the fourth

channel over all other channels are 10 dB larger than

would have been achieved by the channels operating in

isolation. Alternatively, this may be viewed as a saving of

one cavity per channel over using individual channel

filters and other channel combination procedures to meet

the same specification, Many examples have been

analyztd, and it has been found that there is very little
deteric,ration in return 10ss performance even down to

contiguous channels.

In most practical realizations of this prototype multi-

plexer, the manifold will have phase properties which are

frequency dependent. We shall consider in detail the case

where the manifold possesses a transmission-line

frequency dependence, and any other cases could be

considered in a similar manner.

111. THE FREQUENCY DEPENDENT MANIFOLD

Incorporation of the f requen CY dependence of the

m~anifc~ld in a manner compatible with the established

design procedure is by no means obvious. The problem is

to incorporate correction terms a –‘ into the circuit de-

scription of a length of transmission line in a way which is

both physically reasonable and results in a tractable solu-

tion. A number of early attempts failed for reasons which

117

CHANNEL

~--------”---–T--

__l_l_l___.-_-l.-

q, u

Fig. 5. Definition of phase leng$hs in manifokl.

became apparant only after successful solutions went ob-

tained.

The first positive results were obtained using a piece-

wise-constant expression for the phase shift between

channels. This is equivalent to an assumption that the

individual channel bandwidths are sufficiently small so

over any one channel the manifold presents a constant

phase shift to the network. Over different channels the

manifold possesses different constant values of phase

shift.

This approach gives a considerable improvement over

the constant phase shifter prototype when implemented

into the design equations and applied to practical situa-

tions. However, with several channels requiring a long

manifold the response deteriorates due to large phalse

changes of the manifold across the individual chanIlel

passbands. It is necessary then to take the frequency

dependence of the manifold into account more exactly as

follows.

The manifold multiplexer shown schematically in Fig. 5

indicates shunt-connected channels terminated in an

open-circuited line. The electrical length between the ,rth

channel and the termination is defined as +, at the

frequency Q,, leading to the general expressions indicated

in the figure valid at any frequency Q. This circuit may be

regarded as a prototype, and practical cases using a

short-circuit termination may be designed by inch~ding

slight modifications as described later.

In the constant phase-shifter theory, the transfer mlatrix

of a phase shifter between physically adjacent cha nnek

was defined as in (1) and (2). In the frequency-dependent

case, it is recognized that the most dominant terms in.

volved in the design equations will be the lengths from

each channel to the termination rather than the lnter-

channel spacings. The following transfer matrix is found

to give an adequate representation of the mth electrical

length (shown in Fig. 5):
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When a = 1, this matrix represents a length of transmis- and

sion line. It has the same format as (1) and (2) with the

susceptance B~ replaced by tan (@mQ-a -‘ /Q~). Hence a -‘ ~~,B~=a-’ tan+, +ti,a-2~(l+tan2 ~,)

the transformation a-– a does not change the sign of the

electrical length (the B and C terms in (41) do not change

sign), which is a physical requirement. It is known that the +a-3(G,+@,(*) r )2 tan IJ,(l + tanz +,) + e(a ‘4). (46)

distance of each channel to the termination is close to an

integral multiple of ~ even for channels spaced fairly

closely in frequency, so that the transfer matrix (41) Here G,, G,’ are undetermined coefficients of a -3 which

should not vary too rapidly with changes in interchannel are not required.

frequencies (i.e., with changes in a). The essentially If the analysis of the manifold is modified accordingly,

quadratic (a ‘2) dependence of this transfer matrix en- then (13)–( 17) become
sures that the transfer matrix does indeed vary slowly with a-’ term:
a and results in physically valid solutions. .

The transfer matrix between channels m and m + 1 is,
.

C,, ~,11 = ~ #r
Cm,(Q:– Qm) ‘tan ‘r

(47)
by application of (41), given by ~=1

a-’ q term:

T(L) T(-L+l)
Y,lJC’,, = ~ #r 1 2 + #(1+ tan2 4,) (48)

‘+ ~’”-l~an”m ‘a-’~+ml “-2’ermrn=’ Cm’(”r-’m) ‘

! ()4’.
1 1 jet ‘] tan~~+l 1

~_~tan ~L?r – tan (*,)

l+a-2tan2@M+1 ~a-ltan%+l 1 Yro2= Y,12–c:/?; ,+2 ~
~=] C:(Q, – Qm)

[ 1 (42) ~ _3ti2 term

= A ‘“:’”” ‘a-~ ‘ ‘

where at u = Q,a + Ui

%=$(%+w’)
m

‘m+l(flr+qa-’)%+1==

(see also (31)) (49)

c: C,2&23

J;
=m:#r c ~Q1_Q )3 -($)2

mlrm r

, tan *,(1+ tan2 ~,) (50)

(43) a ‘3~1 ‘e’m:

– 2 Crl cr2 r&23

~2cr? Drll Yr12

(44) J;

This implies that in the previous analysis for the

frequency independent manifold as presented in Section ‘d2-a’+(tan(*”*)-tan+ )”Z cml@?:-Qm)2
II, B~ should be replaced by the expression (44) above,

after expansion as a power series in a – 1. Thus in the

previous analysis we should replace the following quanti-

ties containing B~ by the expressions shown: -($(1+tan2($”Q))

‘-’m ( ($Qr)-tan(+r))‘$(1+tan2+r))Jzlcm(~-QJa-’ ~ B =a-l tan
~=1

‘oa-2($(1+tan2(N)-$(1+’an24
‘a-3(G+’J[(wan(w+tan2(H)
()cd’— ])~ tan 4,(1+ tan2 +,) + ~(a”) (45)

r

+~ +(l+tan2(*Q,))-*(l+tan2 (*f2r))

~=2 Cm,(!ii?r– Qm)

_y H+tan2(&4)-:(1+tan2+J ,5,)
~=1 Cml(flr–tlm) ‘
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which reduces to
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may be combined into the form

_:~, H1+tan2(t”o))-$’’+’an2+J,52)

Cm,(fl–am)r
Subs{ ituting (47), (48), and (50)

P,= tan ~r. i ‘—
r?z=r+l cn,*(Qr–Qm)2

into (52) gives

-( )1 A2—
c,, ~ tan +,( 1+ tan2 *,)

()k,
,_l tan ~L?,

‘-1 *(1+tan2(*or))
+Xm–z

m=l cm, (fl —Qm)2 ~=1 C’m,(fl-%)

(53)

where P, is defined in (20).

For large phase lengths in the manifold, the second and

sixth terms on the right-hand side of this equation can

become large. These terms, however, were obtained from

a power series expansion in a –‘ which assumed that these

were small as compared to the first and fifth terms. Thus

it is important to recombine the terms.

Consider the function

Assuming that (1 – fl~/L?,) is small as compared to unity,

we may expand (54) as a power series in (Q~ – Q,). The

first three terms are

().42~ tan *,(1 +tan2 *,) + “ - “ . (55)
r

Hence the first four terms of the right-hand side of (53)

. # tan $,(1+ tan? $,). (56)
r

Combining terms five and six on the right-hand sidle of

(53) in a similar manner results in (:53) becoming

In practice, the terms in (57) containing the (~M/!ln,)2

factors may now be deleted.

For r = 1, the only unknown appearing in this transcen-

dental equation is +, which may be obtained iteratively

using, for example, the Newton–Raphson technique for a

solution around any integral number of T rad.

Having obtained $1, (57) may then be solved for 42 with
r = 2 under the restriction

+. +,-1
~<~ (58)

r r—l

which is necessary to ensure that a positive length of line

separates the two channels along the manifold. This pro-

cess may be repeated until r = n – 1. but for r:= n the first

term on the right-hand side of (57) disappears, and a

solution to the equation may be difficult to obtain. This

corresponds closely to the result obtained in the frequency

independent manifold case. Normally $. would be chosen

to be zero,

From the values of +,, (47)–(50) may then be used to

obtain the remaining design parameters, and a silmple

updating process commencing with the nth channel will

ensure a good passband match near to the band center of

each channel.

Frequently it may be desirable to terminate the n~ani-

fold in a short circuit approximately n/2 rad from the last

channel. This is achieved readily by replacing

()
tan04–cot6=tan e–~ (59)

in (47)–(57) resulting in an increase in each value of +, by

approximately m/2.

These equations have been programmed and applied to

the design of several multiplexer having either widely

spaced or contiguous channels. As an example of the

latter a ten-channel manifold was designed in WR~5 to
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I

Fig. 6. (a) Realization of general even-degree filter. (b) Realization of

general odd-degree filter.

divide the 14– 14.5-GHz band into ten contiguous chan-

nels. The doubly terminated prototype filters were

selected to have six cavities with 22-dB return loss band-

width of 43 MHz, and the channel center frequencies were

spaced by 49 MHz (this gives 3-dB crossover points). The

multiplexer synthesized from the design equations was

analyzed on the computer, and showed results in good

agreement with theory. In fact, the worst return loss at the

common port in the entire band is approximately 16 dB,

occurring near the passband edges; most of the band has
return loss of greater than 22 dB. This multiplexer has not

yet been built in practice, but there is good reason to

believe that practical versions would work in accordance

with theory, since the computer analysis is known to be

accurate in predicting practical performance. Presently

only relatively simple manifold multiplexer, such as that

described in Section IV, have been actually constructed.

A. Extension to Filters with Extra Cross-Couplings

In the most general case of optimum equiripple filters

having finite frequency transmission zeros and/or com-

plex conjugate pairs of transmission zeros giving improved

phase response, extra cross-couplings are utilized as desig-

nated by the cross-coupling admittance inverters included

in the low-pass prototypes depicted in Fig. 6. The even-

degree case is shown in Fig. 6(a), and the convenient

asymmetric realization of the odd-degree case [5] is shown

in Fig. 6(b). The question arises of how to treat the extra

cross-coupling inverters when such filters are multiplexed.

Such filters are often realized using dual-mode cavities to

give convenient means of inclusion of the extra cross
couplings.

From a practical viewpoint filters will have at least

10-dB attenuation in the stopband and normally consider-

ably more. This implies that the first cross-coupling is very

small compared to the main line couplings, and for filters

of degree greater than 2, the second cross-coupling will

also be small. Thus, in calculating the input impedance of

the filter for the purposes of the multiplexer theory, the

first and second cross-couplings may be ignored initially.

Then, after calculating the correction terms for multiplex-

ing, it can be shown that the scaling factor for the correc-

tion on a cross-coupling J~q is the same at the scaling

factor on J~. For example, the correction factor on J~ for

the rth channel is given by (33) as (1 – y,~l)l’z, so that the

corresponding cross-coupling admittance inverter changes

accordingly as

J(r)i+q -+J,rjkq(l - yrA,)’/2, k=l,2,. . . ,N, –1. (60)

Here the subscript r has been added in parentheses to

indicate the rth channel as in (33).

B. Design of Practical Waoeguide Multiplexer

Early waveguide multiplexer constructed on a common

manifold were designed on a semiempirical basis and

required adjustable phase shifters between channels to

take up unknown junction effects, particularly unpredic-

ted phase shifts across the junctions. This is no longer

necessary, since it is not difficult to take the junction

effects into account by computer analysis, e.g., [6] which

describes the design of an aperture-coupled E-plane mul-

tiplexer.

Similar excellent results have been obtained both in

theory and practice using aperture-coupled H-plane mani-

folds. The slit-coupled H-plane T junction is a particularly

useful circuit for rectangular waveguide filters since the

equivalent circuit is very accurate, and the junction pro-

vides the first admittance inverter and shunt susceptance

of the filter. The equivalent circuit of Marcuvitz [7, Fig.

6.6-2] is easily transformed as indicated in Fig. 7. Here we

make the simplification that the broad dimensions of the

main line and side arms are equal, giving

Xc za

zo=Ag”

(61)

(62)

The capacitive T of Fig. 7@) is identical to a series

reactance –j(X~ – XC) in cascade with an ideal impedance

inverter of impedance XC, and carrying out a Kuroda-type

transformation gives the final equivalent circuit of Fig.

7(c) where

J &—._
YO 2a

%=-%[(a-l].

(63)

(64)

The negative shift in the reference planes, as indicated in
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Fig. 7. (a) Sht-coup]ed H-plane T junction; (b) Marcuvitz equivalent

circmt: and (c) Modlfled equivalent clrcult.
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Fig. 7(a~, is given by

~=la~d4

()
—— —
32T Ag 2a “

(65)

The finite thickness of the iris of width d may be taken

into account by inclusion of the short length of waveguide

so form;d, which may be either below or above cutoff.

The design equations for the susceptances and cavity

lengths of a direct-coupled cavity filter connected to the

manifold, as illustrated in Fig. 8, may be based on those

given in [8] for narrow-band filters. The equations require

modification when based on the prototype used in this

paper [1, Fig. 2] and are as follows.

Given band-edge guide wavelengths Apl and Avz, the

fractional bandwidth is defined as “

z(~g, – ~gz)

“= Ag, +Ag2 “

Defining

F‘:= + (:;:;WJ

~,_~ti;~

k - J, (T/2)w ‘
for k=2,3j

J’ ;

r

“1 gN

A+l=
N (n/2)~

then the shunt susceptances are given by

bO1=J/J{– J;/J

.

(66)

(67)

, N (68)

(69)

(70)

bk,k+l= J~–l/J;, fork= 1,2, ”””, N–1 (71)

b J’N. A’+l= JV+l –l/J~+, (72)

( 2
+h=v–~/2 tan--’ — ——.——

lbA2,,Ll ‘+tan )“ 1%+11

(73)

In (70) above J is the admittance inwerter shown in Fig.

8(c), given by (63) with YO= 1.

The iris opening d in Fig. 7(a) is given by (64) with

B/ YO replaced by the value of bol given by (70).

In applying the above formulas to the multiplexer the

modified prototype element values given earlier in this

section are used, and the cavities are “detuned’” from their

nominal values given by (73) in accordance with this

theory.

In the case of rather broad-band waveguide filters, the

improved theory given in [9] should be used to derive

equivalent effective prototype values for [67]–[69].

IV. PRACTICAL lUSULT: A WR229 WAVEGUIDE

TRIPLEXER

The theory described in the previous section was ap-

plied to the design of a waveguide WR229 manifold

triplexer. Each channel consists of a 37-MHz bandwidth

six-cavity Chebyshev filter having ripple return loss 26 dB

(VSWR 1.1) with center frequencies at 3720, 3800, and

3880 MHz. Although this is not a “severe” contiguous or

nearly contiguous case, it is far from trivial from a design

viewpoint because the 26-dB return loss is relatively dif-

ficult for a multiplexer. The theoretical performance is

shown in Fig. 9, which gives the common port return loss

and channel insertion losses of the triplexer, taking all

practical effects into account. It is seen that all six return

loss poles are present in each channel, and the return loss

minima are close to the specified level of 1!6 dB. The

physical spacing between channels was approximately one

guide wavelength to allow the filters to be all on one side

of the manifold, as shown in Fig. 10.

The measured performance was very close to the theo-
reti cal prediction, and no problems, were experienced in

obtaining the five ripples at the 1.1-VSWR level in each

channel. In particular, no empirical adjustments to the

waveguide manifold were required, e.g., in the relative

spacing between the channels. This has been tihe case also

for several manifold multiplexer of this type made in a

variety of waveguide sizes.
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Fig. 9. Analysis of a practical waveguide manifold triplexer,

Fig. 10. Photograph of the WR229 triplexer.

V. CONCLUSIONS

A new design process has been presented for bandpass

channel multiplexer where the channel filters are sep-

arated along a manifold. The design process has been

found to be valid for a large variety of channel separa-

tions from very large guardbands down to contiguous

channel operation. In addition to the design process being

canonic (i.e., the total degree of the multiplexer is equal to

the sum of the individual degrees of the channel filters), a

significant improvement in channel performance is

achieved over the individual channel filters operating in
iscllation. For the basic manifold prototype multiplexer

with frequency-independent phase shifters, theoretically,

there are no limitations upon the number of channels nor

the complexity or type of channel filters used.

[n practice, the manifold will possess a transmission-

line frequency dependence, and modifications to the de-

sign process have been presented which are valid for fairly

broad-band operation. There are two limitations, namely,

the maximum channel bandwidths and the maximum

number of channels, the latter normally beirng more re-

strictive due to the significant frequency dependence of a

long manifold.
Examples have been given indicating that both input

and output multiplexer suitable for most communication

systems may readily be designed. Practical waveguide

manifold multiplexer have been constructed, showing

that the theory is reproduced in practice with no empirical
adjustments being required to the location of the filters on

the manifold.
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Tables for Nonminimum-Phase Even-Degree
Low-Pass Prototype Networks for

the Design of Microwave
Linear-Phase Filters

J. H. CLOETE, MEMBER, lEEE

AIbstrszct-The element vafues of a selection of even-degree nooroirri-

mum-phase low-pass prototype networks with eqrriripple passbmrd arnpli-

trrde and constant group delay in the least squares sense over a large

percentage of the passband are tabulated. At] the prototypes have passband

insertion loss ripple R =0.01 dB and cutoff frequency tiC = 1.0 rad/s at the

O.01-dB puint. Five tables contain the element values of networks up to

degree N =20. The tables are classified according to tbe snssnber of

transmissinrs zeros at infinite frequency NZm and the passband frequency

to which the group delay is constant in ttse least squares seose Wd. The

following combinations of NZm arsd ad are tabrstatak NZW = 2 and

c,rd==0.9; ,VZm =4 and tid =0.8; NZO = 6 and od=0.7; NZm =8 and

~J = 0.6; i~d NZ ~ =10 and Wd= 0.5, Tbe maximum phase and delay

errors for each network are tabulated. Plots of the psmsband group delay

and stopbausd insertion lass versus frcqnency, for each networkj accompany

the tables to facilitate selection of a prototype. The prototypes are suitable

for the design of narrow-baud generafii interdigital, generafk?ed direet-

corrpled cavity wavegrside, and generalii combline linear-phase filters A

simple algmitfrm for the anafysis of the prototypes is given.

I. INTRODUCTION

T

~ HE SYMMETRICAL nonminimum-phase low-pass

prototype network introduced by Rhodes [1] is shown

for the even-degree case. It is topologically suited to the

design of microwave bandpass filters capable of good

amplitude selectivity while approximating closely to linear

phase over a large percentage of the passband. The

Manuscnpt received February 13.1978: rewsed June 27, 1978.
The author was with the Department of Electrical Engineenng, Um-

versity of Stellenbosch, Stellenbosch 7600, South Africa, on leave from
the National Institute for Aeronautics and Systems Technolo~j Council
for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001,
South Africa.

Fig. 1. The symmetrical even-degree nomnmimum phase low-pass pro-

totype network consisting of lumped capacitors and ideal admittance
mverters. The notation for the network elements is consistent with the
notation used in Tables I–V.

microwave filters are realized by providing coupling

between nonadjacent resonators. Examples include the

generalized interdigital filter [2], the generalized direct-

coupled cavity waveguide filter [3]–[5] and the generalized

combline filter [6].

The first step in the design of a narrow-band microwave

linear-phase filter is to find the element values of a !low-

pass prototype which satisfies the amplitude and phase or
group delay specifications. When this step is completed

the elements in the equivalent circuit of the microwave

filter may be calculated [2], [3]. A number of approxima-

tion theories and techniques have been described for the

construction of nonminimum-phase low-pass transfer

functions from which the element values of the prototype

networks can be synthesized [1], [4], [7]–[ 10]. These

methods generally require considerable computation to

achieve a satisfactory prototype. The method of Levy [4],

applicable when only one pair of finite zeros provides
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