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Design of General Manifold Multiplexers

J. DAVID RHODES, MEMBER, IEEE, AND RALPH LEVY, FELLOW, IEEE

Abstract—The direct analytical design process for arbitrary multiplexers
given in a previous paper is extended to the case of bandpass channel
filters connected to a uniform-impedance manifold (e.g., a length of
waveguide or transmission line). The previous approximations are greatly
improved by adding immittance compensation in a way which not only
preserves the canonic form of the network but also assists in the physical
construction by spacing the filters along a manifold. The phase shifters
between channels are themselves sufficient to compensate the filter inter-
actions to such an extent that contiguous channeling cases are designable.
The results are presented mainly in closed form requiring minimal com-
puter optimization.

Analysis of multiplexers with frequency-dependent manifolds indicate
that there are restrictions on the total bandwidth, but a ten-channel
multiplexer is probably feasible, suitable for input and output muitiplexers
required in typical communications systems. Practical results on a simple
manifold triplexer are presented.

[. INTRODUCTION

]' N THE previous paper [1] it was shown that there are
. inherent limitations to the canonic matching of a mul-
tiplexer comsisting of a number of filters connected di-
rectly in series or parallel. We may define canonic match-
ing as that requiring only changes to the parameters of the
filters and not adding extra immittance compensation
networks. In this paper immittance compensation is in-
troduced, but in a way which not only preserves the
canonic form of the network but also assists in the physi-
cal construction by spacing the filters along a manifold.
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The phase shifters between channels are sufficient to
compensate the multiplexer to such an extent that con-
tiguous channeling cases are designable by the theory.

It is interesting to consider various approaches to the
design of multiplexers, particularly on a manifold feed.
Due to requirements in communication satellites and
elsewhere, many attempts have been made to produce
such multiplexers. One important and difficult require-
ment is that of an output multiplexer on a waveguide
manifold with bandpass channels separated to yield
guardbands of only 10 percent. Most design techniques
have adopted an approach based upon singly terminated
bandpass channels resulting in 3-dB crossover points be-
tween channels, e.g.. [2]. [3]. Such designs exhibit good
return loss over the channel bandwidths and the guard-
bands. Also, dummy channels have to be included to
simulate channels at the edges of the total multiplexer
bandwidth, forming an additional annulling network.
Thus redundant elements are necessary, and the channel
interactions are compensated to produce a channel perfor-
mance comparable to the individual channels based upon
a singly terminated prototype.

The need for contiguous band multiplexers originally
arose in receiver design for countermeasures where the
incoming signal was unknown and complete band
coverage was necessary with good match at all frequen-
cies. Here all channels have to be designed on a singly
terminated basis and must provide a prescribed level of
attenuation over the major part of other bands.

However, the requirements for multiplexers in com-
munication systems are different since they must provide
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good reflection and transmission only over each channel
bandwidth while maintaining high attenuation over all
other channels. For typically realizable passband return
loss specifications (e.g., 20-25 dB), the optimum solution
leads to attenuation in excess of 10 dB at the crossover
frequencies independent of the guardband bandwidth.
Thus contiguous band multiplexers are nonoptimum in this
situation and have probably been used because a design
procedure was known. They result in a higher degree filter
than necessary in each channel in addition to the annull-
ing network. Furthermore, if one attempts to use singly
terminated designs for crossover levels in excess of 3 dB,
the passband return loss rapidly deteriorates if further
annulling networks are not used.

The significant difference between the optimum design
approach and the contiguously designed solution to the
above type of problem may be illustrated by the simple
diplexer examples presented in [4, Figs. 4 and 5]. For the
case of two noncontiguous bandpass channels of band-
width 2 and guardband of 1, five-cavity Chebyshev filters
may preduce a return loss >25 dB over each passband
while >34-dB attenuation is achieved over the opposite
channel [4, Fig. 4], whereas the contiguous approach using
similar five-cavity filters gives an attenuation level over
the opposite channel of only 19 dB [4, Fig. 5]. Thus the
price paid for preserving the good 25-dB return loss at the
common port over the guardband region is a 15-dB reduc-
tion in the attenuation level in the stopband! Hence, for
most applications in communication systems, contiguous
band multiplexers result in designs far from the optimum
solution.

The alternative approach described here is an extension
of the companion paper [1] and similarly commences from
doubly terminated prototype filters. Modifications are
then made to all elements when the manifold is designed.
Criteria used in this approach are that multiplexers having
an arbitrary number of channels with different band-
widths and variable center frequency spacings should be
designable, and that the individual passband perfor-
mances should be maintained from the case of large
guardbands down to contiguous crossovers. In addition to
the 6-dB improvement in stopband attenuation levels over
frequency bands where a passband exists elsewhere in the
multiplexer (given by any type of design due to power
division between the in-band and out-of-band channels),
further improvement in attenuation due to compensation
of the interaction between channels should be expected.

II. MANIFOLD THEORY APPLIED TO
FREQUENCY-INDEPENDENT MANIFOLDS

The theory for the manifold multiplexer is identical
with that of the directly coupled multiplexer up to (15)
and (17) of [1], which form the in-band and out-of-band
input admittances of the channel filters. It is necessary to
refer also to [1, Figs. 1-4] for definitions of the terminol-
ogy. However, rather than employing direct parallel con-
nection as in [1, Fig. 4], we form the manifold multiplexer

Fig. 1.

Prototype manifold multiplexer.

shown in Fig. 1. Y, ,(w) is the imput admittance of the mth
channel as a function of frequency. The transfer matrix of
the mth, unity impedance phase shifter may be written as

1 ‘B !
_r SEm& (1)
VI+Ba™? JjBna”! 1
where
8, =tan"" (B,a™}). )

Initially the manifold is assumed to be frequency indepen-
dent and of uniform inpedance. Modifications to the
design process will be made at a later stage to account for
the frequency dependence of the manifold. Note that as
a—oo (the case of decoupled channels), §,—0 or an
integral multiple of =, ie., the channels are effectively
connected in parallel as in [I]. a=1 gives the actual
situation to be determined.

An additional n parameters B, B,,---,B, appear to
have been obtained by connecting the filters on to a
manifold, but later it will be shown that one of these is
redundant.

If the rth channel is in band, then

Y, =Y, (%a+w) €)

as given by [1, eq. (15)] while the admittance of the rest of
the channels which are out of band are given by

)7," =Y,Q,a+w) 4
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with m=:1,---,r—1L,r+1,---,n and Y,, is given by [1, eq.
(17)]. The transfer matrix of the network at the set of
frequencies (Q,a+w,) will now be derived. The transfer
matrix for the mth channel admittance followed by the
mth phase shifter is

1
[T,]=—F——
Y1+ B2a™?
1 ijocl
- ~2B B
jBa'+¥, 14— 9%
le(Qr*Qm) le(ﬂr—'ﬂm)z

&)
and the matrix possesses an error of order -4,
For the first #— 1 channels we have a transfer matrix

1 4 B r—1

— = T

F[ ¢ D} mI;Il [ m:|
where by analysis, for errors up to ™~
transfer matrix of the form

(6)

4 we have a lossless

Fe %242

A=1+aa =
r—1

B=j > B,a '+jba”?
m=1

l\-)l

-3
a,w,0

r—1

Csza_l+z Y, —jea™?

m=1

D=1+d1a_2_‘

(7)

wdya ?

where

m= =1
m—1
ril [g B’
a =
’ m=2 le(Qr Qm)2
J—1
r—1 m 2 B, m—1 Jj—1
e S h| 8 e s (52 )
r=1 1
= —B
Cl m2=2 (le(gr—Qm) m)
m—1
w2 B

113
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Fig. 2. Approximate equivalent circuit of manifold at frequencies in
the rth-channel passband.

m=1
)

I(Qm Y ) mZZ(

=1 /

(8)

We may proceed with a similar analysis for the network
after the rth channel. However, we require only the input
admittance which is given by

C/
YL_T ")
with
A'=1+da = dywa?
n n
C'=j > B,a '+ > Y,—jCia”? (10)
m=r m=r+1
where
m—1
2 B _
n < ‘nﬁ (B mE—lB)
g= 3 —t=- ¥ (B 2B
: m=2r+l (Q —Q ) m:r+l 1=
m—1
2 B
n —
a,2= =r

m=2r+1 C,(2,-2,)

“ 1
Cl= S E—— %
: m=2r+2 ( le(ﬂr_gm) )
m=1
m 2 Bl J—1
S e CoL) I

J=r+l1 CJI(Q,«_QJ) Jj=r+1 1=r

and Y, is a reactance function up to the order a4

We now have the network shown in Fig. 2, and at the
set of frequencies w=%8, a+w, we require the common
port reflection coefficient and the rth channel port reflec-
tion coefficient to be zero. Since up to the order of
approximation the networks given by (6) and (9) are
lossless, we need only apply the condition of a conjugate
match at any plane in the network. Applying this condi-
tion at the junction with the rth port we have

(12)
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Expanding the right-hand side of the equation as a
power series in « ~! and comparing with the expansion of
Y, in [1, (15)] yields

1) a” " term:
n 1 7
Cy By = -~ % B, (13
L S 2
2) a 2w, term:
z 1
112G = 3 (14)
Tzt m;m C,.(2,—2,)
3) a % term:
i
Y2~ Yoo~ CABL =a,—d,— 213 Z_ C,(2,-9,)

(15)
4) a_3w2 term:
CACabas _ (16)
Ji m=1=r C
5) a 3w, term:

_ZCrIC 2 1Mr23
—"”;—L‘ +2Cr21 lgrlﬂ’ru

rl

—a,+ Z B, E — (17

m= m=1 C I(Q -Q )
6) a3 term:

223
CaBas— —‘—rJr +2C Boi¥ri2— %02Cot By — G3 B

ri

=2 cm(sz}—szm)( Yoo (szﬁm?z )
JZ
Cot Crn@,—2,,)° )
R DN c coe
+a] i B, +b,
=
d, mZZI m +(a,+d1)mz=le

r—1 2r-1 1
*(E,B’") 2 Cu®, 0
(18)
Applying the above set of equations for r=1-n leads
to 6n equations with up to 6» unknowns. Since these are

linear simultaneous equations we may attempt to obtain
direct expressions for the unknown quantities,

Substituting for a, and 4, from (8) into (17) gives

r—1
2 B

_CICZBB < 1=m
— T L CAB Y= —_—. (19
I b 2 any Y
Defining a new function P, as
p=y 1L 3 !
’ m=1zr le(ﬂr_ﬂm)z m=1zr le(Qr_Qm)
1 = 1
o 3 s ()

#r ml(Q -8 )

and substituting for B,; and v,, from (16) and (14),
respectively, into (19) results in the set of equations

rt

n n 1
P— 2 B, Z
m=r m=1 ml(Q -Q )
r—1
ril 2 Bl
= =m r= 1,2, ,n). (21)
m=1 C‘ml(Qr—Qm)2 (
If
H=3 B, (22)
then (21) may be rearranged as
H,
-S He
m=1C,,(2,-2,,)
H=—s : (23)

m=r+1 le(Qr - Qm)z

and hence H, may be obtained for r=1—-n—1. H,_is, in
general, indeterminate since the set of equations (21) on
close inspection represent »n equations with n—1 un-
knowns. From a network viewpoint this may readily be
appreciated by considering the network shown in Fig. 1.
The last phase shifter §, represents a frequency invariant
reactance in parallel with the sth channel admittance
Y, (w). Since this may be readily absorbed into the modifi-
cation to the first admittance inverter and resonant
frequency of the first cavity, this element is redundant and
may be made zero, i.e.,

B, =0. 29
In the very special case of the diplexer
¢, —C C
= GG, _Cap g
Cllclzz(gl_gz) Cy
and, consequently,
H
- __1___2 = (26)
Cn(ﬂz_ﬂl)

enabling both equations given in (21) to be satisfied. For
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the triplexer and above in the nth channel at the end of
the manifold only five of the six conditions may be
satisfied.

Combining (22) and (24) we have the final design for
the manifold

Br=Hr_Hr+l
with r=1,2,---.,n—1 and H,=0.

Having solved for B, we may then substitute into (13)
to obtain B, as

(27)

1 1 &

0= - - B, (28)
L 11 Crl m:21¢r le(ﬂrﬂﬂm) n12=r
and from (14) and (16)
1 % 1
e (29)
* Crl m=1s#r le(Qr - Qm)z
and
J3 “ 1
Bu=—t— D ———— (30)
BC2C, miie €,0(2,-9,)
Additionally, the substitution of (8) into (15) gives
r—1
r—1 Z B’
Y2 ™ Y2 ™ Cr21 r211+2 2 — (31)

m=1 le(Qr_Qm)

In principle, the set of equations (18) may be used to
obtain f,;,, but these contain very tedious algebra. Since
these equations result from the a =% term, they represent a
fine adjustment to the matching of each channel around
midband, and, in general, this is more readily done by
direct computer optimization of the circuit around the
midband frequencies of each channel, as described later.
Furthermore, since the a ~*w, could not be satisfied for the
nth channel, such optimization leads to a slightly im-
proved performance.

A further fine improvement in the design formulas may
be obtained by closer inspection of the expansions for Y,
and Y, as given in [1, egs. (15) and (17)]. If we assume
that the resonant frequencies of all the resonators should
be changed, then noting the format of [1, (11)], the follow-
ing generalization is applied:

Brk_)-— Crk(Qra+Brkla_[) (32)

where /=2k—1, k=2,3,---,N,. Similarly, if we assume
that the admittance inverters should also change, then a
generalization of [1, (9)] leads to
‘]ri_)‘]ri'(l - -Yr;\:l[) (33)
where /=2k, k=1,2,---,N,—1. Now by expanding [I.
(15) and (17)] to a > it becomes obvious that the extra
correction terms above are associated only with the terms
of highest degree in w, for each coefficient of & ’. Thus in

15
addition to [1, (19), (20), and (22)] which give
1) a”'&? term:
1 & |
IBr” Crl m=21;/=r le(Qr_Qm) (3 )
2) a %w, term:
1 “ 1 .
V2= — (35)
12 Crl m=1#r le(ﬂ‘,_gm)2

3) a 3w term:

J? n
T S S (36)

Bras=
2 Cr21 C,z m=1%r le(ﬂr—ﬂm)B

we have also
4) o W} term:

Yira= __‘i S _1— (37)
P CAC, miter €, (2, -9,) ‘
and
5) a @ term:
JZJZ n
Bias= o ! (38)

C,%C}ZC,:; m=lzr le(ﬂr_ﬂm)f) .

The general expression for the higher order terms is now
obvious. Actually. these are associated with the effect of
the first resonators only of each out-of-band channel,
since such resonators are responsible for the terms of
highest degree in w,.

At this point it is useful to summarize the design pro-
cess step-by-step.

1) Compute the values of P, given by (20).

2) Compute the values of H, given by (23) for r=
1,2,--+,n—1and H,=0.

3) Then the B, are given by (27).

4) The coefficients B,,, V12 B3> and v,4, are given by
(28)-(31).

5) The higher ordered correction terms v,,, with /=2k
and f3,,, with /=2k —1 which are defined in (32) and (33)
are given by formulas such as (37) and (38), which are
easily generalized to give

o= T2} $ L )
* Crk s=1 C2 m=1sr le(ﬂr-—-ﬂ;m)l

rs

where /=2k and

1 kﬁl J2 i 1
Bua= 7~ > —  (40)
Cu\so S (9,9,

rs

where /=2k—1.

As stated earlier, in addition to the above design pro-
cess, a further refinement may be made to ensure that the
best possible performance is obtained about the band
center frequencies. For out-of-band channels, one may
truncate the filters after two or three cavities to produce a
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Fig. 3. Computer response for common port return loss of the four-channel manifold
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Fig. 4. Insertion loss response for each channel of the four-channel manifold multi-

plexer.

purely reactive loading on the manifold. Define 2,, as the
resonant frequency of the kth resonator of channel 7.
Then in the odd-degree case J,, and £,; may be slightly
modified to produce a conjugate match at the junction
with the manifold at midband. For the even-degree case,
J, and §,, in addition may be modified to produce a
conjugate match at the two frequencies closest to mid-
band. This updating process may be performed channel
by channel and, if necessary, may be repeated.

A computer program has been developed to evaluate all
of the design formulas with the additional updating pro-
cess described above. As an example, we may consider a
four-channel prototype multiplexer with all channels be-
ing of the conventional Chebyshev type. The first channel
to be dropped along the manifold from the common port

is of fifth degree,' passband return loss of 22 dB, band-
width 17, and center frequency —34.5. The three remain-
ing channels in order are of degree 5, 6, and 4, band-
widths 17, 27, and 7, and center frequencies—11.5, 16.5,
and 39.5, all designed with a passband return loss of 22
dB. The guardband between all channels is 6. This multi-
plexer has much closer relative channel spacings than any
of the designs illustrated in [1]. The element values are
given in Table I, and the computed response for the
common port return loss is shown in Fig. 3 with the return
loss at the appropriate channel port being comparable
over the corresponding passband. The performance is

"Here “degree” corresponds to the number of cavities or resonant
elements of the filter.
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TABLE1
TABLE OF ELEMENT VALUES OF FOUR-CHANNEL PROTOTYPE
MuLTIPLEXERS “CoOUPLING” Is J,;, “ADM” Is C,;, AND “REs.
FreQ.” Is ©,,; ELEMENTS ADJACENT TO THE MANIFOLD ARE
TABULATED FIRST

T GmweL . DEGREE . BELL BANDHIDTH  CENIRE FREQ. j
: 1 5 22 8 17 53,5 ;
1 COUPLING aoM, RES_FREQ. ‘
i 0 9665 0.1053 -37.9807
' 1185 0.2757 -35.0087 |
1.6889 0.3408 -34 5264 |
1.7011 0.2757 34,5015
‘ 1.3132 B 0.1053 -345002 L &
1 CHANMEL ‘DEGREE . RET.LOSS BANDWIDTH_~ CENTRE FREG, |
| 2 5 22 db 17 -1s ‘
b copne M. RES.FRED. !
| 1.01°9 0.1053 -13 2129 '
} 1.12(6 0.2757 -11.4¢48 ‘
16767 0.3408 -11.4894 ‘
17007 0.2757 -11.4991 i
132 0053 o -Vi.4es . i
CHANNEL DEGREE PET.LOSS _ BANDWIDTH  CENTRE FREQ, |
‘ 3 6 22 a8 27 65 !
| COUPLING AH. RES.FREQ.. \
| 1.6149 0.0680 4.1212 "
1,200 01859 16 9914 i
\ 17760 0.2539 16 4315 i
! 2.0294 0.2539 16.4953
1'83% 0.1859 16.499) ‘
1,337 0.0680 16.4997
CHANIEL DEGREE RET.LOSS BANDWIDTH _ CENTRE FREQ, |
4 4 22 dB 7 39.5 ‘
§ COUPLING. ADM, RES.FREQ, ‘
! 0.7698 0.2440 42,5572
1.2238 0.6890 39 5479 ‘
1.4%4 0 5880 39 5007

1.273%7 0.2440 395

MANLZOLD PHASE SHIFTERS (RADIANS)
_-0.3%81 -0.8006_0.7818

very close to the 22-dB return loss level, and the band-
widths and center frequencies are equal to the original
channel requirements. The significant improvement in
channel performance using this multiplexer design may be
observed in Fig. 4 where the insertion loss of each
channel is plotted. The 28-dB minimum level of attenua-
tion of the first three channels and 38 dB for the fourth
channel over all other channels are 10 dB larger than
would have been achieved by the channels operating in
isolation. Alternatively, this may be viewed as a saving of
one cavity per channel over using individual channel
filters and other channel combination procedures to meet
the same specification. Many examples have been
analyzed, and it has been found that there is very little
detericration in return loss performance even down to
contiguous channels.

In most practical realizations of this prototype multi-
plexer, the manifold will have phase properties which are
frequency dependent. We shall consider in detail the case
where the manifold possesses a transmission-line
frequency dependence, and any other cases could be
considered in a similar manner.

1.

Incorporation of the frequency dependence of the
manifold in a manner compatible with the established
design procedure is by no means obvious. The problem is
to incorporate correction terms a” " into the circuit de-
scription of a length of transmission line in a way which is
both physically reasonable and results in a tractable solu-
tion. A number of early attempts failed for reasons which

Tue FREQUENCY DEPENDENT MANIFOLD
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CHANNEL _
1 ! T !
i 2 3 "
1 ! !
- W‘w ]
e
Bl -
e JL“L
Q

Fig. 5. Definition of phase lengths in manifold.

became apparant only after successful solutions were ob-
tained.

The first positive results were obtained using a piece-
wise-constant expression for the phase shift between
channels. This is equivalent to an assumption that the
individual channel bandwidths are sufficiently small so
over any one channel the manifold presents a constant
phase shift to the network. Over different channels the
manifold possesses different constant values of phase
shift.

This approach gives a considerable improvement over
the constant phase shifter prototype when implemented
into the design equations and applied to practical situa-
tions. However, with several channels requiring a long
manifold the response deteriorates due to large phase
changes of the manifold across the individual channel
passbands. It is necessary then to take the frequency
dependence of the manifold into account more exactly as
follows.

The manifold multiplexer shown schematically in Fig. 5
indicates shunt-connected channels terminated in an
open-circuited line. The electrical length between the rth
channel and the termination is defined as 4, at the
frequency @,, leading to the general expressions indicated
in the figure valid at any frequency w. This circuit may be
regarded as a prototype, and practical cases using a
short-circuit termination may be designed by including
slight modifications as described later.

In the constant phase-shifter theory, the transfer matrix
of a phase shifter between physically adjacent channels
was defined as in (1) and (2). In the frequency-dependent
case, it is recognized that the most dominant terms in-
volved in the design equations will be the lengths from
each channel to the termination rather than the inter-
channel spacings. The following transfer matrix is found
to give an adequate representation of the mth electrical
length (shown in Fig. 5):

1
()= —
\/1+of2tan2 (%ﬁ)
~1
1 jo~!tan (IP—"'S;—)
Y a lw “1)
ja ! tan( mﬂ ) 1
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When a=1, this matrix represents a length of transmis- and
sion line. It has the same format as (1) and (2) with the n ¥,
susceptance B, replaced by tan (Y, w-a~'/R,). Hence « ' X B,=a 'tan ¢r+wa_2
the transformation a— — a does not change the sign of the
electrical length (the B and C terms in (41) do not change 0 \2
sign), which is a physical requirement. It is known that the (G + wz( 5’) tan v, (1+ tan? llfr)) +e(a™). (46)
distance of each channel to the termination is close to an r
integral multiple of 7 even for channels spaced fairly
closely in frequency, so that the transfer matrix (41)
should not vary too rapidly with changes in interchannel ¢ ) ) . )
frequencies (ie., with changes in «). The essentially If the analysis of the manifold is modified accordingly,
quadratic (a~?) dependence of this transfer matrix en- then (13)-(17) become
sures that the transfer matrix does indeed vary slowly with a~ ! term:
a and results in physically valid solutions.

The transfer matrix between channels m and m+1 is, C.B.,, = 2 £y
by application of (41), given by

(l+tan zp)

Here G,, G’ are undetermined coefficients of « ~* which
are not required.

T-Q—) tan \l/r (47)

a” zw, term:

T(d/m) T( - ¢m+ l) n 1 ‘tbr
= 3 pr— Y ary) @)

3 1 1 Jja 'tan ¢, m=1  C,,(2,-9,)
1+ a2 tan? 6, “'tan ¢, 1 o2 term:
U
. 1 1 ja_ltan ¢m+1 —1 tan(_STQr —tan (‘ljr)
\/1+a‘2 tan? Brra s ja~!tan Bt 1 Yro2= Yri2 ™ r11+2 2 C(2.-9)
_ . 1 ja~ B, W) (see also (31)) (49)
i+ «?B2 |Jo” 'B, a3w? term:
Crzl C'r2 r23 < 1 4/’ 2
where at w=8,a +w, - = o o v o
¢ Jrl m=1zr le(Qr—Qm) r
= ﬁ (2 +wa™) -tan §,(1+tan?y,) (50)
-3 .
S =2 (@, 0 ) @y o e
ml _ZCrICrZBrZ.’: +2CZB ¥
1 —t ri Mriliri2
B I
l+a"“tan ¢, tan ¢, ,
r—1

This implies that in the previous analysis for the = dy— o, + (tan (l!'l .¢r) —tan ) > .
frequency independent manifold as presented in Section @ ) om=i Ca(2,-9,)°

I, B, should be replaced by the expression (44) above,

after expansion as a power series in a~!. Thus in the Y ¥,
previous analysis we should replace the following quanti- - ( 9. (1 +tan’ (‘Q‘ Qr))
ties containing B,, by the expressions shown: !
r—1 r—1
- - Y Y, 1
a! m§__:1 B, =« l(tan (Q—iﬂr) —tan (\[/,)) — ﬁr(l +tan? %)) 221 C@-a.)
+wa? k4] 1 +tan? ﬁﬂ (1+tan ¥,) ¥ i 2 ‘PIQ Y 2 ‘ng
3 Ql Ql 1 —Q—l— + tan Q—l , ——Q— 1+tan ﬁ- r
+ m m
— 11!/1 g lll’ llbl m=2 le(ﬂr_ﬂm)
3 A1 Xt
a (G,+w, (91 tan QIQ 1+ tan? 91 Q,

- %—(1 + tan? (%Q,))— —;;i(H—tan2 )

)+e(a_4) (45) -2 Cm(Q ) )r (51)

w \2
- (5’) tan ,(1+tan? ;)
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which reduces to

r—1

one
r1>~r2Hr23 2 .
- 12 GiBatmn= 2
vrl m=1

tan (g—"’ﬂ,) —tany,

m

le(ﬂr - Qm)2

- éﬂ(l-ktan“ (é— Q ))—éﬁ(l-ktanz\pr)

m

- 2=1 le(gr_gm)

(52)

Substituting (47), (48), and (50) into (52) gives

u |
P=tany, X
m=r+l1 C‘ml(Qr_Qm)2

< 1
E le(grigm)

m=r+1

Lf'/r 2
- Q_(l +tan? )

tan ,(1+ tan” ¢, )

r

ri r

- tan(é’" ) o %(l+tan2(éﬂﬂr))

m=1 C,(2,—2,)  m=1 C,.(2,-9,)
(53)

2
- é (%) tan ,(1+tan’ y,)

where P, is defined in (20).

For large phase lengths in the manifold, the second and
sixth terms on the right-hand side of this equation can
become large. These terms, however, were obtained from
a power series expansion in o' which assumed that these
were sraall as compared to the first and fifth terms. Thus
it is important to recombine the terms.

Consider the function

Qm r
tan ( 0, z{x,) =tan (¢,+(Qm——9,)§r). (54)
Assuming that (1 -8, /,) is small as compared to unity,
we may expand (54) as a power series in (2,,—,). The
first three terms are

( Q
tan

- ¢,)=tan ¥+ (2,-2,)

%(1 +tan? ) + (R, —2,)°

v\
(QL) tan §,(1+tan® )+ - - -.

r

(55)

Hence the first four terms of the right-hand side of (53)
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may be combined into the form

tan ( L, 1[/)
n Qr r
2 S S

m=r+1 le(ﬂr ——Qm)

(-5 2

X tan ¥,(1+tan’ y,).

o (56)

Combining terms five and six on the right-hand side of
(53) in a similar manner results in (53) becoming

(g
n n ‘Q_ r

501
p- £3 )
m=r+1 Czl(Q —Q ) Qr m=r Crl
% ’J tan
== tan y,(1+tan? , —
9 ( ) m_l (jml(Qr__Qm)2
r—1 IP 2 1 5
— smy 5
m2=1(9m) - tan v, (1+tan?y,,). (57)

In practice, the terms in (57) containing the (y,,/%,.)
factors may now be deleted.

For r=1, the only unknown appearing in this transcen-
dental equation is ¥, which may be obtained iteratively
using, for example, the Newton—-Raphson technique for a
solution around any integral number of # rad.

Having obtained ¢,, (57) may then be solved for ¢, with
r=2 under the restriction

¥ ¥
[T

r r—1

(58)

which is necessary to ensure that a positive length of line
separates the two channels along the manifold. This pro-
cess may be repeated until r=n— 1. but for r=n the first
term on the right-hand side of (57) disappears, and a
solution to the equation may be difficult to obtain. This
corresponds closely to the result obtained in the frequency
independent manifold case. Normally ¥, would be chosen
to be zero.

From the values of i,, (47)-(50) may then be used to
obtain the remaining design parameters, and a simple
updating process commencing with the nth channel will
ensure a good passband match near to the band center of
each channel.

Frequently it may be desirable to terminate the mani-
fold in a short circuit approximately = /2 rad from the last
channel. This is achieved readily by replacing

tan #— —cot f=tan (0*%) (29)

in (47)—(57) resulting 1n an increase in each value of 4, by
approximately = /2.

These equations have been programmed and applied to
the design of several multiplexers having either widely
spaced or contiguous channels. As an example of the
latter a ten-channel manifold was designed in WR75 to
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Fig. 6. (a) Realization of general even-degree filter. (b) Realization of
general odd-degree filter.

divide the 14-14.5-GHz band into ten contiguous chan-
nels. The doubly terminated prototype filters were
selected to have six cavities with 22-dB return loss band-
width of 43 MHz, and the channel center frequencies were
spaced by 49 MHz (this gives 3-dB crossover points). The
multiplexer synthesized from the design equations was
analyzed on the computer, and showed results in good
agreement with theory. In fact, the worst return loss at the
common port in the entire band is approximately 16 dB,
occurring near the passband edges: most of the band has
return loss of greater than 22 dB. This multiplexer has not
yet been built in practice, but there is good reason to
believe that practical versions would work in accordance
with theory, since the computer analysis is known to be
accurate in predicting practical performance. Presently
only relatively simple manifold multiplexers, such as that
described in Section IV, have been actually constructed.

A. Extension to Filters with Extra Cross-Couplings

In the most general case of optimum equiripple filters
having finite frequency transmission zeros and/or com-
plex conjugate pairs of transmission zeros giving improved
phase response, extra cross-couplings are utilized as desig-
nated by the cross-coupling admittance inverters included
in the low-pass prototypes depicted in Fig. 6. The even-
degree case is shown in Fig. 6(a), and the convenient
asymmetric realization of the odd-degree case [5] is shown
in Fig. 6(b). The question arises of how to treat the extra
cross-coupling inverters when such filters are multiplexed.
Such filters are often realized using dual-mode cavities to
give convenient means of inclusion of the extra cross
couplings.

From a practical viewpoint filters will have at least
10-dB attenuation in the stopband and normally consider-

ably more. This implies that the first cross-coupling is very
small compared to the main line couplings, and for filters
of degree greater than 2, the second cross-coupling will
also be small. Thus, in calculating the input impedance of
the filter for the purposes of the multiplexer theory, the
first and second cross-couplings may be ignored initially.
Then, after calculating the correction terms for multiplex-
ing, it can be shown that the scaling factor for the correc-
tion on a cross-coupling J,,, is the same at the scaling
factor on J;. For example, the correction factor on J, for
the rth channel is given by (33) as (1—v,;,)'/?, so that the
corresponding cross-coupling admittance inverter changes
accordingly as

J(’)kq——)'](")kq(l - Yrk[)l/z’ k= 1,23' " 9Nr_ 1- (60)

Here the subscript » has been added in parentheses to
indicate the rth channel as in (33).

B. Design of Practical Waveguide Multiplexers

Early waveguide multiplexers constructed on a common
manifold were designed on a semiempirical basis and
required adjustable phase shifters between channels to
take up unknown junction effects, particularly unpredic-
ted phase shifts across the junctions. This is no longer
necessary, since it is not difficult to take the junction
effects into account by computer analysis, e.g., [6] which
describes the design of an aperture-coupled E-plane mul-
tiplexer.

Similar excellent results have been obtained both in
theory and practice using aperture-coupled H-plane mani-
folds. The slit-coupled H-plane T junction is a particularly
useful circuit for rectangular waveguide filters since the
equivalent circuit is very accurate, and the junction pro-
vides the first admittance inverter and shunt susceptance
of the filter. The equivalent circuit of Marcuvitz [7, Fig,
6.6-2] is easily transformed as indicated in Fig. 7. Here we
make the simplification that the broad dimensions of the
main line and side arms are equal, giving

X, af{4da\? 2a
X, 2a

The capacitive 7 of Fig. 7(b) is identical to a series
reactance —j(X, — X,) in cascade with an ideal impedance
inverter of impedance X,, and carrying out a Kuroda-type
transformation gives the final equivalent circuit of Fig.
7(c) where

%;—% (63)
%=—%{(j—‘;)2—1}. (64)

The negative shift in the reference planes, as indicated in
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Fig. 7. (a) Shit-coupled H-plane T junction; (b) Marcuvitz equivalent
circuit; and (c) Modified equivalent circuit.
2 1 2
L e b . o, =a—1 2(tan"l e tan ———-_).
i $2 i g / By~ 1.4l D1 e+
! [ ] R LOAD (73)
1 | N , _ . -
b, b, Bas Butw On,ns In (70) above J is the admittance inverter shown in Fig.
ANIFOLD 8(c), given by (63) with Y,=1.

Fig. 8. Typical waveguide channel filter on a mamfold.

Fig. 7(a), is given by

wd
2a

1 a 4
A= (5 )
327 A,

The finite thickness of the iris of width ¢ may be taken
into account by inclusion of the short length of waveguide
so formed, which may be either below or above cutoff.

The design equations for the susceptances and cavity
lengths of a direct-coupled cavity filter connected to the
manifold, as illustrated in Fig. 8, may be based on those
given in [8] for narrow-band filters. The equations require
modification when based on the prototype used in this
paper [1, Fig. 2] and are as follows.

Given band-edge guide wavelengths A,; and A,,, the
fractional bandwidth is defined as

(65)

2\, —A,,)
gl g2
L I a—— (66
Agi A )
Defining
o1 wi g
Ji=\7ns 67
=T Y @/2w (67)
1 oV 818
Ji=—————,  fork=23,---,N (68
LT e (68)
’ __L w,IgN
N+1 JN (’77/2)W (69)
then the shunt susceptances are given by
boy=J/J{=J{/J (70)
br1=Ji—1/J}, fork=1,2,---,N—1 (71)
by n+ 1= 171/ Insi (72)

The iris opening & in Fig. 7(a) is given by (64) with
B/ Y, replaced by the value of by, given by (70).

In applying the above formulas to the multiplexer the
modified prototype element values given earlier in this
section are used, and the cavities are “detuned” from their
nominal values given by (73) in accordance with this
theory.

In the case of rather broad-band waveguide filters, the
improved theory given in [9] should be used to derive
equivalent effective prototype values for [67]-{69].

1V. Practical ResuLT: A WR229 WAVEGUIDE
TRIPLEXER

The theory described in the previous section was ap-
plied to the design of a waveguide WR229 manifold
triplexer. Each channel consists of a 37-MHz bandwidth
six-cavity Chebyshev filter having ripple return loss 26 dB
(VSWR 1.1) with center frequencies at 3720, 3800, and
3880 MHz. Although this is not a “severe” contiguous or
nearly contiguous case, it is far from trivial from a design
viewpoint because the 26-dB return loss is relatively dif-
ficult for a multiplexer. The theoretical performance is
shown in Fig. 9, which gives the common port return loss
and channel insertion losses of the triplexer, taking all
practical effects into account. It is seen that all six return
loss poles are present in each channel, and the return loss
minima are close to the specified level of 26 dB. The
physical spacing between channels was approximately one
guide wavelength to allow the filters to be all on one side
of the manifold, as shown in Fig. 10.

The measured performance was very close to the theo-
retical prediction, and no problems were experienced in
obtaining the five ripples at the 1.1-VSWR level in each
channel. In particular, no empirical adjustments to the
waveguide manifold were required, e.g., in the relative
spacing between the channels. This has been the case also
for several manifold multiplexers of this type made in a
variety of waveguide sizes.
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Fig. 9. Analysis of a practical waveguide manifold triplexer.

Fig. 10. Photograph of the WR229 triplexer.

V. CONCLUSIONS

A new design process has been presented for bandpass
channel multiplexers where the channel filters are sep-
arated along a manifold. The design process has been
found to be valid for a large variety of channel separa-
tions from very large guardbands down to contiguous
channel operation. In addition to the design process being
canonic (i.e., the total degree of the multiplexer is equal to
the sum of the individual degrees of the channel filters), a
significant improvement in channel performance is
achieved over the individual channel filters operating in
isclation. For the basic manifold prototype multiplexer
with frequency-independent phase shifters, theoretically,
there are no limitations upon the number of channels nor
the complexity or type of channel filters used.

In practice, the manifold will possess a transmission-
line frequency dependence, and modifications to the de-

sign process have been presented which are valid for fairly
broad-band operation. There are two limitations, namely,
the maximum channel bandwidths and the maximum
number of channels, the latter normally being more re-
strictive due to the significant frequency dependence of a
long manifold.

Examples have been given indicating that both input
and output multiplexers suitable for most communication
systems may readily be designed. Practical waveguide
manifold multiplexers have been constructed, showing
that the theory is reproduced in practice with no empirical
adjustments being required to the location of the filters on
the manifold.
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Tables for Nonminimum-Phase Even-Degree
Low-Pass Prototype Networks for
the Design of Microwave
Linear-Phase Filters

J. H. CLOETE, MEMBER, IEEE

Abstract—The element values of a selection of even-degree nonmini-
mum-phase low-pass prototype networks with equiripple passband ampli-
tude and constant group delay im the least squares sense over a large
percentage of the passband are tabulated. All the prototypes have passband
insertion loss ripple R =0.01 dB and cutoff frequency w,=1.0 rad/s at the
0.01-dB point. Five tables contain the element values of networks up to
degree N =20. The tables are classified according to the number of
transmission zeros at infinite frequency NZ  and the passband frequency
to which the group delay is constant in the least squares sense w;. The
following combinations of NZ_ and w, are tabulated: NZ =2 and
w;=09; NZ_ =4 and «,;=08; NZ_ =6 and «,=0.7; NZ =8 and
w;=0.6; and NZ_ =10 and w,;=0.5. The maximum phase and delay
errors for each network are tabulated. Plots of the passband group delay
and stopband insertion loss versus frequency, for each network, accompany
the tables to facilitate selection of a prototype. The prototypes are suitable
for the design of narrow-band generalized interdigital, generalized direct-
coupled cavity waveguide, and generalized combline linear-phase filters. A
simple algorithm for the analysis of the prototypes is given.

1. INTRODUCTION

’I‘ HE SYMMETRICAL nonminimum-phase low-pass
prototype network introduced by Rhodes [1] is shown
for the even-degree case. It is topologically suited to the
design of microwave bandpass filters capable of good
amplitude selectivity while approximating closely to linear
phase over a large percentage of the passband. The
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Fig. 1. The symmetrical even-degree nonminimum phase low-pass pro-
totype network consisting of lumped capacitors and ideal admittance
inverters. The notation for the network elements is consistent with the
notation used in Tables I-V.
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microwave filters are realized by providing coupling
between nonadjacent resonators. Examples include the
generalized interdigital filter [2], the generalized direct-
coupled cavity waveguide filter [3]-[5] and the generalized
combline filter [6].

The first step in the design of a narrow-band microwave
linear-phase filter is to find the element values of a low-
pass prototype which satisfies the amplitude and phase or
group delay specifications. When this step is completed
the elements in the equivalent circuit of the microwave
filter may be calculated [2], [3]. A number of approxima-
tion theories and techniques have been described for the
construction of nonminimum-phase low-pass transfer
functions from which the element values of the prototype
networks can be synthesized [1], [4]. [7]-]10]. These
methods generally require considerable computation to
achieve a satisfactory prototype. The method of Levy [4],
applicable when only one pair of finite zeros provides
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